Dispersion curve-based sensitivity engineering for enhanced surface plasmon resonance detection
نویسندگان
چکیده
Manipulation of dispersion curve for enhancing surface plasmon resonance (SPR) detection is proposed. Based on strong correlation between slope of dispersion curve and SPR angle shift, it is confirmed that dispersion curve characteristics can be employed as an analysis tool to evaluate SPR sensor performance and to predict anomalous plasmonic behaviors. Complicated resonance shift in SPR angle, especially in the presence of metallic nanograting, such as negative shift, can be controlled reliably by engineering the dispersion curve. As it has a dependence on geometrical parameters of metallic films and gratings, dispersion relation engineering is also useful in optimizing the sensor sensitivity. For a wavelength of λ1⁄4630 nm, introduction of a gold nanograting shows a significant improvement in sensitivity by more than 5 times, compared to a traditional thin-film-based SPR structure. In addition, we find that use of a longer wavelength in near-infrared region can be advantageous for avoiding a negative SPR shift and obtaining a narrow and deep SPR curve. Our approach is expected to extend the applicability of dispersion-based sensitivity engineering technique to a variety of SPR platforms for highly enhanced SPR detection. & 2016 Elsevier B.V. All rights reserved.
منابع مشابه
Dispersion Curve Engineering of TiO2/Silver Hybrid Substrates for Enhanced Surface Plasmon Resonance Detection
As surface plasmon resonance (SPR)-based biosensors are well translated into biological, chemical, environmental, and clinical fields, it is critical to further realize stable and sustainable systems, avoiding oxidation susceptibility of metal films-in particular, silver substrates. We report an enhanced SPR detection performance by incorporating a TiO₂ layer on top of a thin silver film. A uni...
متن کاملAntibody Conjugated Gold Nanoparticles for Detection of Small Amounts of Antigen Based on Surface Plasmon Resonance (SPR) Spectra
In this paper, a fast and sensitive localized surface plasmon resonance (LSPR) based biosensor was developed and the optimization of gold – antibody conjugates through investigation of different parameters were performed. Gold nanoparticles (AuNPs) with a size of ~20 nm were synthesized via chemical reduction of HAuCl4 with trisodium citrate as reducing and stabilizing agent. The impacts of pH ...
متن کاملHydrogen sensing by localized surface plasmon resonance in colloidal solutions of Au-WO3-Pd
Nowadays, hydrogen has attracted significant attention as a next generation clean energy source. Hydrogen is highly flammable, so detection of hydrogen gas is required. Gold nanoparticle based localized surface plasmon resonance (LSPR) is an advanced and powerful sensing technique, which is well known for its high sensitivity to surrounding refractive index change in the local environment. We p...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملEnhanced surface plasmon resonance detection using porous ITO–gold hybrid substrates
We demonstrated enhanced surface plasmon resonance (SPR) detection by incorporating an indium tin oxide (ITO) layer on a thin gold film. Porous ITO layers were fabricated by e-beam evaporation and slanted deposition at room temperature and the ITO structure was optimized in terms of the surface roughness and the SPR curve characteristics. In sensing experiments, the results obtained by ethanol–...
متن کامل